Abstract

There are many challenges involved in building near-term large-scale quantum computers. Some of these challenges can be overcome by partitioning a quantum circuit into smaller parts and allowing each part to be executed on a smaller quantum unit. This approach is known as distributed quantum computation. In this study, a dynamic programming algorithm is proposed to minimize the number of communications in a distributed quantum circuit. This algorithm consists of two steps: first, the quantum circuit is converted into a bipartite graph model, and then a dynamic programming approach is proposed to partition the model into low-capacity quantum circuits. The proposed approach is evaluated on some benchmark quantum circuits, and a remarkable reduction in the number of required teleportations is obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call