Abstract

A gradient-based evolutionary optimization methodology is presented for finding the optimal design of viscous dampers to minimize an objective function defined for a linear multi-storey structure. The maximum value along height of the transfer function amplitudes for the interstorey drifts is taken as the objective function. Since the ground motion includes various uncertainties, the optimal damper placement may be different depending on the ground motion used for design. Furthermore, the transfer function treated as the objective function depends on the properties of structural parameters and added dampers. This implies that a more robust damper design is desired. A reliable and robust damping design system against any unpredictable ground motions can be provided by minimizing the maximum transfer function. Such design system is proposed in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.