Abstract
Nuclear-mitochondrial gene interactions governing cytoplasmic male sterility (CMS) in angiosperms have been found to be unique to each system. Fertility restoration of three diverse alloplasmic CMS lines of Brassica juncea by a line carrying the fertility-restorer gene introgressed from Moricandia arvensis prompted this investigation to examine the molecular basis of CMS in these lines. Since previous studies had found altered atpA transcription associated with CMS in these lines, the atpA genes and transcripts of CMS, fertility-restored, and euplasmic lines were cloned and compared. atpA coding and downstream sequences were conserved among CMS and euplasmic lines but major differences were found in the 5' flanking sequences of atpA. A unique open reading frame (ORF), orf108, co-transcribed with atpA, was found in male sterile flowers of CMS lines carrying mitochondrial genomes of Diplotaxis berthautii, D. catholica, or D. erucoides. In presence of the restorer gene, the bicistronic orf108-atpA transcript was cleaved within orf108 to yield a monocistronic atpA transcript. Transgenic expression of orf108 with anther-specific Atprx18 promoter in Arabidopsis thaliana gave 50% pollen sterility, indicating that Orf108 is lethal at the gametophytic stage. Further, lack of transmission of orf108 to the progeny showed for the first time that mitochondrial ORFs could also cause female sterility. orf108 was found to be widely distributed among wild relatives of Brassica, indicating its ancient origin. This is the first report that shows that CMS lines of different origin and morphology could share common molecular basis. The gametic lethality of Orf108 offers a novel opportunity for transgene containment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.