Abstract

Presynaptic differentiation takes place over three interrelated acts involving the biogenesis and trafficking of molecular complexes of active zone material, the "trapping" or stabilization of active zone sites, and the subsequent development of mature synapses. Although the identities of proteins involved with establishing presynaptic specializations have been increasingly delineated, the exact functional mechanisms by which the active zone is assembled remain poorly understood. Here, we discuss a theoretical model for how the trapping stage of presynaptic differentiation might occur in developing neurons. We suggest that subsets of active zone proteins containing polyglutamine domains undergo concentration-dependent prion-like conversions as they accumulate at the plasma membrane. This conversion might serve to aggregate the proteins into a singular structure, which is then able to recruit scaffolding agents necessary for regulated synaptic transmission. A brief informatics analysis in support of this 'Q' assembly hypothesis--across commonly used models of synaptogenesis--is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.