Abstract

HAV has a potential application as the new means to carry Ultra Heavy Payload cargo since it combines the buoyancy capabilities of Lighter-than-Air (LTA), and the aerodynamics of lifting body of Heavier-than-Air (HTA) for speed. Due to its potential, American Institute of Aeronautics and Astronautics (AIAA) has issued a Request for Proposal (RFP) regarding the Hybrid Airship Vehicle (HAV) as cargo transportation with several requirements. AIAA RFP required an envelope that can produce 60% of the lift from buoyancy and 40% of lift from aerodynamic. To satisfy the RFP requirements, this paper analyzed 4 different designs using Computational Fluid Dynamic (CFD) software. Design 4 was chosen as the final design because it meets all the requirements. It was found that at 5° Angle of Attack (AOA), the envelope produce highest aerodynamic lift over drag (L/D) ratio of 3.79. At higher AOA, flow separation occurs at the envelope tail section jeopardizing the aerodynamic characteristic of Design 4 envelope. The lift and drag force graphs were plotted at this AOA and it was found that the HAV envelope is capable of performing the tasks in the RFP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call