Abstract

In this paper, the fracture behavior of 2024-T351 aluminum alloy as a key engineering material in the aeronautical industry is investigated under various planar and nonplanar mixed-mode loading conditions involving pure mode-I and pure mode-III loadings. A newly suggested loading setup accompanied by compact tension shearing and tearing (CTST) specimens is utilized to perform fracture tests. Three-dimensional finite element modeling using the interaction integral method is carried out to derive the stress intensity factors (SIFs) and their ratios through the crack front for several mixed-mode configurations. The numerical results reveal that the coupled effect of modes II and III under mixed-mode I/II, I/III and I/II/III loading conditions is remarkable. Moreover, the amounts of SIFs at the center of the specimens are employed to predict the critical fracture loads according to different mixed-mode criteria. Also, scanning electron microscope (SEM) images of the fracture surfaces of CTST specimens are examined to evaluate the effect of different loading angles from a morphological viewpoint. A good consistency can be found among the results of the theoretical solutions of the criteria and the experimental observations for different loading conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.