Abstract

A conceptual mathematical model has recently been devised to assist environmental managers in predicting the impact on coastal marsh areas of long-term changes in water levels. The model considers such impact solely in terms of the geometry of the confining basin, the change in ambient water level, and the maximum depth for which bottom-rooted emergent vegetation is present. This model is applied to 17 shoreline marshes of various shapes in the Georgian Bay/North Channel region of the Great Lakes. Model outputs of predicted maximum and minimum marsh area subsequent to changes in long-term levels are compared to marsh areas measured from available historical air photos dating from 1935 to 1985. The results of such comparisons indicate that such a geometric model, despite its neglect of the biological complexities of marsh ecology, can serve as a valuable tool for assessing the range of impacts of both natural and man-made changes in long-term ambient water levels on shoreline marshes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call