Abstract
The imperative to mitigate carbon emissions and seek sustainable alternatives to cementitious materials has driven the advancement of geopolymer binders, which are inorganic binders of aluminosilicate industrial-waste materials activated by alkaline agents. The use of geopolymers carries the potential for significant reductions in greenhouse gas emission. Furthermore, the incorporation of plastic waste as aggregates addresses not only resource conservation but also environmental sustainability. This study conducted a comprehensive life-cycle assessment of the use of geopolymers from fly ash as a precursor with polyethylene terephthalate (PET) waste as a substitute for natural aggregates. It was observed that when replacing natural aggregates with PET waste to the maximum extent, the global warming potential (GWP) in the category of emissions related to aggregate preparation increased by 16.7 %. This increase was attributed to significant emissions generated during PET processing, including activities such as washing and grinding. The total GWP to produce one cubic meter of geopolymer mixture was 643.55 kgCO2-e without PET aggregates and 667.86 kgCO2-e with maximum use of PET aggregates. The optimization of energy-intensive PET preparation processes led to a remarkable reduction of 19.63 % for production of geopolymer mixture with maximum use of PET aggregates. These findings show the potential for improved sustainability in the production of geopolymer mixtures and emphasize the critical role of optimizing the production processes in mitigating their environmental impact.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.