Abstract

Understanding liquid-metal interfaces in catalysis is important, as the liquid can speed up surface reactions, increase the selectivity of products, and open up new favorable reaction pathways. In this work we modeled using density functional theory various steps in ethanol oxidation/decomposition over Rh(111). We considered implicit (continuum), explicit, and hybrid (implicit combined with explicit) solvation approaches, as well as two solvents, water and ethanol. We focused on modeling adsorption steps, as well as C-C/C-H bond scission and C-O bond formation reactions. Implicit solvation had very little effect on adsorption and reaction free energies. However, using the explicit and hybrid models, some free energies changed significantly. Furthermore, ethanol solvent had a more considerable impact than water solvent. We observed that preferred reaction pathways for C-C scission changed depending on the solvation model and solvent choice (ethanol or water). We also applied the bond-additivity solvation method to calculate heats of adsorption. Heats of adsorption and reaction using the bond-additivity model followed the same trends as the other solvation models, but were ∼1.1 eV more endothermic. Our work highlights how different solvation approaches can influence analysis of the oxidation/decomposition of organic surface species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call