Abstract
Over the past two decades, the rise in coal worker’s pneumoconiosis has prompted research into the effects of respirable coal dust components. This study explores how coal-pyrites produce hydroxyl radicals (•OH), a reactive oxygen species closely associated with particle toxicity, and assesses the ability of safe chemical additives to reduce •OH production at various pH levels. Promising candidates were evaluated in various solutions, including tap and process waters and simulated lung fluid. We employed electrokinetic measurements, infrared and X-ray photoelectron spectroscopies, and ab initio atomistic simulations to analyze particle surfaces. The study also looked at how surface aging affects •OH production. Our results show that •OH generation of the pyrite varies and is catalyzed by elements like silicon, aluminum, and iron in pyrite. Carboxymethyl cellulose was effective in reducing •OH production by targeting surface sulfide and silicon sites and affecting surface hydration and charge. Atmospheric aging was found to increase •OH production, especially in the pyrite with high iron and silicon and low calcium contents, relative to other samples. This highlights the role of the pyrite surface properties and chemical composition, and the solution pH and composition in •OH generation by coal-pyrites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.