Abstract

The objectives of this study were 1) to investigate production and energetic efficiencies among lactating dairy Holstein-Friesian (HF), Jersey (J), and Jersey×Holstein-Friesian (F1) cows over a total lactation at pasture and 2) to measure the associations among efficiency variables and performance traits. Data from 110 cows were available (37 HF, 36J, and 37F1). Breed groups were not balanced for parity; 16 HF, 10J, and 9F1 were in parity 1, whereas the remainder were in parity 2. Milk production, body weight (BW), body condition score (BCS), and estimates of dry matter intake (DMI) corresponding to 51, 108, 149, 198, and 233 d in milk were available. Breed group had a significant effect on all the production parameters investigated: milk yield, solids-corrected milk (SCM), milk fat, protein and lactose concentrations, and milk solids (MLKS; fat+protein yield). Daily MLKS yield was similar for HF and J (1.33 and 1.28kg/d, respectively). There was a tendency for F1 (1.41kg/d) to produce more MLKS compared with HF. The HF breed had higher BW throughout the study compared with F1 and J. Mean BCS was higher for F1 (3.00) and J (2.93) compared with HF (2.76). Mean DMI was similar with HF (16.9kg) and F1 (16.2kg) and was lowest with J (14.7kg). Breed group had a significant effect on all the efficiency parameters investigated: total DMI per 100kg of BW, SCM per 100kg of BW, MLKS per 100kg of BW, and MLKS per total DMI, which tended to be highest for J. Production efficiency based on net energy intake per MLKS was most favorable for F1 and J compared with HF [12.5, 13.0, and 14.1 UFL, respectively, where 1 UFL is defined as the net energy content of 1kg of standard barley for milk production (O’Mara, 2000)]. Significant estimates of hybrid vigor were evidenced for milk yield, milk lactose content, SCM, MLKS, net energy for lactation, BW, BCS, and net energy intake per MLKS. The correlations examined indicated that production efficiency was positively associated with MLKS yield.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.