Abstract
Recent years have seen the emergence of two significant technologies: big data systems capable of storing, retrieving, and processing large amounts of data, and machine learning algorithms capable of learning and predicting complex sequences. In combination, these technologies present new opportunities to leverage the increasingly large amounts of traffic volume data to improve traffic flow prediction and the detection of anomalous traffic flows. In this paper, we investigate and evaluate the use of hierarchical temporal memory (HTM) for short-term prediction of traffic flows over real-world Sydney Coordinated Adaptive Traffic System data on arterial roads in the Adelaide metropolitan area in South Australia. Results are compared with those from long–short-term memory (LSTM). Extended experimentation with LSTM network configurations in both batch learning and online learning modes provide results with superior predictive performance over previous usage of LSTM and other deep learning techniques for short-term traffic flow prediction. In addition, we argue that HTM has potential as an effective tool for short term traffic flow prediction with results on par with LSTM and improvements when traffic flow distributions change.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.