Abstract

ABSTRACT A new method to estimate design discharge quantiles is described based on converting multi-day rainfall P to flood event runoff RO, factored to generate discharge Q. The so-called PROQ transfer function is founded on simple flood volume-peak and GRADEX rainfall-runoff tanh relationships. Performance testing of PROQ, in both at-site and regional design flood contexts up to 1 in 100 annual exceedance probability, was made using south east Queensland streamgauge data. A statistical comparison against proven methods showed that the PROQ transform has significant potential as an alternative for design flood estimation. An example of how PROQ can be used within a design flood framework and recommendations for further enhancement are provided. Abbreviations: AEP: Annual exceedance probability; AMS: Annual maximum series, extracted from the flood record at a gauge site; ANOVA: Analysis of variance; ARR: Australian Rainfall and Runoff guidelines; A-S: At-site. Describes a set of methods to estimate design flood quantiles by statistical analysis of the flood record at an individual gauge site; E: Nash–Sutcliffe efficiency; FFA: Flood frequency analysis; G-B: Multiple Grubbs-Beck test recommended by ARR 2019 for low flow censoring. Used for at-site flood frequency analysis; GEV: General extreme value probability distribution; GRADEX: Gradient of extreme values. Design flood probability concept originating in France based on parallelism of rainfall and runoff quantile curves; L: Retention of rainfall within the catchment during flood event, expressed as a depth; LP3: Log Pearson 3 probability distribution; P: Rainfall depth; PRM: Probabilistic Rational Method. An ARR method for ungauged, undeveloped Australian catchments superseded in 2016; PROQ: Transfer function based on converting P to RO and then factoring RO to estimate Q; PW: Palmen and Weeks. Regional method for ungauged, undeveloped Queensland catchments developed by Palmen and Weeks (2011); R: Retention curve number. Used in probabilistic charting of design floods based on PROQ; RE: Absolute relative error; REG: Regional. Describes a set of methods to estimate design flood quantiles using information obtained from at-site analyses of several representative catchments within a region; RO: Flood event runoff depth; SR30: Strike rate of estimates within ±30% tolerance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call