Abstract

A new discrete-velocity model is presented to solve the three-dimensional Euler equations. The velocities in the model are of an adaptive nature—both the origin of the discrete-velocity space and the magnitudes of the discrete velocities are dependent on the local flow—and are used in a finite-volume context. The numerical implementation of the model follows the near-equilibrium flow method of Nadiga and Pullin and results in a scheme which is second order in space (in the smooth regions and between first and second order at discontinuities) and second order in time. (The three-dimensional code is included.) For one choice of the scaling between the magnitude of the discrete velocities and the local internal energy of the flow, the method reduces to a flux-splitting scheme based on characteristics. As a preliminary exercise, the result of the Sod shock-tube simulation is compared to the exact solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.