Abstract

The use of lower order approximations in the neighborhood of boundaries coupled with higher order interior approximations is examined for the mixed initial boundary-value problem for hyperbolic partial differential equations. Uniform error can be maintained using smaller grid intervals with the lower order approximations near the boundaries. Stability results are presented for approximations to the initial boundary-value problem for the model equation u t + c u x = 0 {u_t} + c{u_x} = 0 which are fourth order in space and second order in time in the interior and second order in both space and time near the boundaries. These results are generalized to a class of methods of this type for hyperbolic systems. Computational results are presented and comparisons are made with other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.