Abstract

Deep neural networks have demonstrated remarkable efficacy in diverse classification tasks. In this paper, we specifically focus on the predictive performance in deep binary classification problems with the sigmoid loss. Given that sigmoid loss is categorized as a non-convex and bounded loss function, it exhibits potential resilience against the disruptive impact of outlier noises. We first derive the convergence rate of the excess misclassification risk for deep ReLU neural networks with the sigmoid loss, a result that attains minimax optimality. To the best of our acknowledge, we are the first to derive the convergence rate for the sigmoid loss. Moreover, we extend our analysis to derive a faster convergence rate under margin assumptions. This achievement renders our findings comparable to those of commonly employed convex loss functions operating under analogous assumptions. Lastly, we undertake a comprehensive validation of the robustness inherent in the sigmoid loss across diverse datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.