Abstract
Abstract Laser-based powder bed fusion (PBF-LB) is an advanced additive manufacturing technique renowned for its precision and capability to fabricate complex metal components. However, the high thermal gradients and rapid cooling rates intrinsic to this process introduce significant process-induced effects, such as inhomogeneities, surface roughness, anisotropy, and residual stress, all of which critically influence the fatigue behavior of the produced parts. This study investigates the fatigue performance of AlSi10Mg samples produced by PBF-LB, examining the impact of varying surface conditions, geometries, and residual stress levels. Fatigue-life prediction models are formulated based on nominal stress amplitude, residual stress, form factor, crack-initiating inhomogeneity, and surface roughness, with smooth samples serving as a baseline reference. The study presents two empirical models for predicting fatigue life and fatigue strength using S–N curves and the Kitagawa–Takahashi diagram with the El Haddad approach, derived from comprehensive experimental data, including finite element modeling, fatigue-life measurements, surface roughness evaluations, and residual stress analysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have