Abstract

The effects of cooling rate and of solvent properties on the active site heterogeneity of two copper proteins, azurin and plastocyanin, have been investigated at low temperature by electron paramagnetic resonance spectroscopy. The spectra of theses proteins have been analyzed, by an accurate computer simulation, in terms of a distribution of some relevant spin-Hamiltonian parameters. The results show that the structural heterogeneity of both proteins, quantified by the width of the distribution in the g and A tensors, is affected by both the freezing procedure and the solvent composition. In particular, the g distribution width is found to be reduced in the slow cooling regime; such a reduction appearing more significant when glycerol is added to the protein solutions. Despite of the similarity in the copper ion microenvironments of the two proteins, the effects are more pronounced in azurin. The results are discussed also in connection with the role played by the solvent and the rate of freezing in featuring the conformational substate landscape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.