Abstract

A sensitive and selective method for the determination of the antibiotic chloramphenicol (CAP) is described, which is based on double signal amplification and GO as an efficient fluorescence quencher. The nucleic acid probe is composedof three well-defined regions, viz. the signal probe I, the signal probe II, and the capture probe. The capture probe will bind to CAP specifically and the signal probes produce a significantfluorescence signal. One end of the signal probes is labeled with the fluorophore 6-carboxyfluorescein (FAM). The labeled probes can be adsorbed on graphene oxide (GO) via π-stacking interactions, upon which the green fluorescence of FAM (measured at excitation/emission wavelengths of 490/514nm) is quenched. On addition of CAP, the aptamer/CAP complexes are formed, and this leads to the restoration of fluorescence due to the removal of the probes from GO. The double signal probes, together with GO as quencher, improve the fluorescence signal significantly and lower the detection limit. Under optimized conditions, the assay works in the 20- to 200-ppb CAP concentration range and has a 0.3-ppb detection limit. It is also successfully applied to the determination of CAP in spiked swine urine samples. The recoveries from spiked swine urine samples are between 97.73 and 108.56%, and the repeatability (expressed as the RSD) is between 4.66 and 8.90%. Graphical abstract The constructed DNA probes form a stable structure and bind to chloramphenicol specifically. One end of signal probes was labeled with the fluorophore 6-carboxyfluorescein (FAM). The detection sensitivity of chloramphenicol was significantly enhanced by using double signal amplification, which was superior to the traditional methods. The quantities of CAP can be achieved by fluorescence increment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call