Abstract
AbstractA model was developed for the prediction of the entrainment rate of non‐uniform sediment considering the movement of bedforms. Laboratory experiments were conducted to advance the formulations of the proposed model and to validate and estimate the model parameters. The model parameters were related to the hydraulic conditions of the flow and the properties of the sediment mixtures using dimensional analysis and gene expression programming. The model incorporated four parameters on its formulation, namely the Shields stress and critical Shields stress to describe the hydraulic and sediment conditions of the flow, the Kramer coefficient of uniformity to describe the grain size distribution of a particular sediment mixture, and the relative position of a particular grain size fraction to the geometric mean to describe the entrainment rate of that fraction within the sediment mixture. The proposed model provided satisfactorily predictions with a deviation less than 25% between the measured and predicted values for most of the fractions, which confirms the validity of the proposed approach and model in predicting of the entrainment rates of various fractions. The model predictions were also compared with other models available for the prediction of the entrainment rate of non‐uniform sediment. The model predictions were within the same order of magnitude of the other models’ predictions. Copyright © 2015 John Wiley & Sons, Ltd.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have