Abstract

The mammalian entorhinal cortex routes inputs from diverse sources into the hippocampus. This information is mixed and expressed in the activity of many specialized entorhinal cell types, which are considered indispensable for hippocampal function. However, functionally similar hippocampi exist even in non-mammals that lack an obvious entorhinal cortex or, generally, any layered cortex. To address this dilemma, we mapped extrinsic hippocampal connections in chickadees, whose hippocampi are used for remembering numerous food caches. We found a well-delineated structure in these birds that is topologically similar to the entorhinal cortex and interfaces between the hippocampus and other pallial regions. Recordings of this structure revealed entorhinal-like activity, including border and multi-field grid-like cells. These cells were localized to the subregion predicted by anatomical mapping to match the dorsomedial entorhinal cortex. Our findings uncover an anatomical and physiological equivalence of vastly different brains, suggesting a fundamental nature of entorhinal-like computations for hippocampal function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.