Abstract
In order to improve the quality of blind image restoration, we propose an algorithm which combines Non-negativity and Support constraint Recursive Inverse Filtering (NAS-RIF) and adaptive total variation regularization. In the proposed algorithm, the total variation regularization constraint term is added in the NAS-RIF algorithm cost function. The majorization-minimization approach and conjugate gradient iterative algorithm are adopted to improve the convergence speed. We do the simulation experiments for the blurred classic test image which is added additive random noise. Experimental results show that the restoration effect of our algorithm is better than the spatially adaptive Tikhonov regularization method and the NAS-RIF spatially adaptive regularization algorithm, while the value of improvement of signal to noise ratio (ISNR) has improved.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have