Abstract

Vertical underwater acoustic (UWA) communications play a crucial role in deep-sea applications. A vertical UWA channel generally features a moderate multipath but with time-varying Doppler shifts as well as loud impulsive noise. To achieve a robust vertical single-carrier UWA communication, this paper proposes an enhanced iterative receiver. First, a spline interpolation-based timing estimation approach is proposed to compensate for the time-varying Doppler effects efficiently. Then, the residual timing errors and the multipath interference are tackled by a fractionally spaced self-iterative soft equalizer (SISE) based on the vector approximate message passing (VAMP) algorithm. The VAMP-SISE consists of four parts: an inner soft slicer and an inner soft equalizer for symbol detection as well as a denoiser and a minimum mean-squared error estimator for impulsive noise suppression. Different parts iteratively exchange extrinsic information to improve the equalization performance. Last, a channel-fitting irregular convolutional code and a unity-rate code are employed at the transmitter to lower the signal-to-noise ratio threshold for reliable communications. Deep-sea experiments verify the performance superiority of the proposed receiver over existing schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call