Abstract
Vertical underwater acoustic (UWA) communications play a crucial role in deep-sea applications. A vertical UWA channel generally features a moderate multipath but with time-varying Doppler shifts as well as loud impulsive noise. To achieve a robust vertical single-carrier UWA communication, this paper proposes an enhanced iterative receiver. First, a spline interpolation-based timing estimation approach is proposed to compensate for the time-varying Doppler effects efficiently. Then, the residual timing errors and the multipath interference are tackled by a fractionally spaced self-iterative soft equalizer (SISE) based on the vector approximate message passing (VAMP) algorithm. The VAMP-SISE consists of four parts: an inner soft slicer and an inner soft equalizer for symbol detection as well as a denoiser and a minimum mean-squared error estimator for impulsive noise suppression. Different parts iteratively exchange extrinsic information to improve the equalization performance. Last, a channel-fitting irregular convolutional code and a unity-rate code are employed at the transmitter to lower the signal-to-noise ratio threshold for reliable communications. Deep-sea experiments verify the performance superiority of the proposed receiver over existing schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.