Abstract
The sampled-data stabilization problem of nonlinear stochastic singular systems on the basis of the Takagi–Sugeno fuzzy models under variable samplings is discussed in this article. A new piecewise Lyapunov–Krasovskii functional is constructed, which can capture the actual sampling mode’s available features more fully, and an enhanced input-delay method is presented. By using the proper augmented scheme based on the auxiliary vector function, the new mean square admissibility criteria are derived by making good use of the convex combination techniques and the free weighting matrix approach. It is shown that the obtained results in this article contain less conservatism when compared with the existing ones. The superiority and correctness of our results are verified by an application example of a truck–trailer model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.