Abstract

This note is devoted to study the stabilization problem of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control. By introducing the notation of input-to-state practical stability and an event-triggered strategy, we establish the input-to-state practically exponential mean-square stability of the suggested system. Moreover, we investigate the stabilization result by designing the feedback gain matrix and the event-triggered feedback controller, which is expressed in terms of linear matrix inequalities. Also, the lower bounds of interexecution times by the proposed event-triggered control method are obtained. Finally, an example is given to show the effectiveness of the proposed method. Compared with a large number of results for discrete-time stochastic systems, only a few results have appeared on the event-triggered control for continuous-time stochastic systems. In particular, there have been no published papers on the event-triggered control for continuous-time stochastic delay systems. This note is a first try to fill the gap on the topic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.