Abstract

In the single-fiber-composite (SFC) test, a fiber imbedded in a matrix is loaded in tension, resulting in a fragmentation of the fiber. In the conventional version of this test, the final fiber fragmentation length distribution is used with a micro-mechanical model to determine the average fiber/matrix interfacial shear stress. In the enhanced version of this test, one also determines the applied stress at each fiber fracture, and from this, one can evaluate the strength of the fiber at short gage lengths. In our measurement system, we utilize an acoustic emission (AE) technique to detect the fiber fractures and to locate the fiber breaks and so determine both the fiber failure stresses as well as the fiber fragmentation lengths while the test is in progress. Critical to the success of this test is a broadband AE system that utilizes point-like AE sensors, procedures for evaluatingin situ, the wavespeed of the first wave arrival and signal processing techniques for determining the arrival time of this signal as precisely as possible for a broad range of wave shapes. Here we describe the application of such an enhanced SFC test procedure to investigate the failure of a Nicalon™ fiber in an epoxy matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.