Abstract

The impact of a rigid-rod into a low-strength target is an ubiquitous research problem in many scientific and engineering fields. Typically, this impact has been modeled by the expansion of a pressurized spherical cavity in an unbounded elasto-plastic medium. In this paper, an engineering penetration model was developed using the dynamic spherical cavity expansion theory for an elasto-plastic, compressible, strain-dependent and strain-rate-sensitive material. The material plastic flow behavior was modeled using the Cowper–Symonds strength model. The engineering model was numerically solved, and its predictions were compared with results of computational finite-elements simulations performed in ANSYS/AUTODYN. Additionally, engineering and computational models were validated with experimental data using spherical-nosed, M300 steel projectiles impacting a semi-infinite Al 6061-T651 plate. Comparisons showed good agreement among engineering model results, computational model results and experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.