Abstract
Abstract The paper addresses the application of engineering biology strategies and techniques to the automation of laboratory workflow—primarily in the context of biofoundries and biodesign applications based on the Design, Build, Test and Learn paradigm. The trend toward greater automation comes with its own set of challenges. On the one hand, automation is associated with higher throughput and higher replicability. On the other hand, the implementation of an automated workflow requires an instruction set that is far more extensive than that required for a manual workflow. Automated tasks must also be conducted in the order specified in the workflow, with the right logic, utilizing suitable biofoundry resources, and at scale—while simultaneously collecting measurements and associated data. The paper describes an approach to an automated workflow that is being trialed at the London Biofoundry at SynbiCITE. The solution represents workflows with directed graphs, uses orchestrators for their execution, and relies on existing standards. The approach is highly flexible and applies to not only workflow automation in single locations but also distributed workflows (e.g. for biomanufacturing). The final section presents an overview of the implementation—using the simple example of an assay based on a dilution, measurement, and data analysis workflow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.