Abstract
A novel Energy Management System (EMS) model for an isolated microgrid, integrating thermal energy resources, such as Combined Heat and Power (CHP) units, boilers, Heat Pumps (HPs), and Thermal Storage System (TSS), while considering thermal load models, is proposed in this paper. The developed EMS is tested and validated with a real testbed microgrid located in Bari, Italy, which supplies both electricity and heat to a building at the Politecnico di Bari. The proposed EMS aims to minimize the fuel cost and includes thermal comfort requirements and building models, along with suitable models for CHP units and hot water-based TSS, based on an optimization problem formulated as a Mixed Integer Linear Programming (MILP) problem, which is readily handled with commercial solvers, making the EMS fit for online applications. The proposed EMS is compared with an electrical-only EMS, i.e., a practical EMS that does not include thermal systems, with the simulations carried out for different winter days demonstrating the economic benefits of accounting for thermal system models in a microgrid EMS, resulting in significant savings in the daily fuel cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.