Abstract

With advances in wireless communications and low power electronics there is an ever increasing need for efficient self-contained power systems. Traditional batteries are often selected for this purpose; however, there are limitations due to finite life-spans and the need to periodically recharge or replace the spent power source. One method to address this issue is the inclusion of an energy harvesting strategy that can scavenge energy from the surrounding environment and convert it into usable electrical energy. Since civil, industrial, and aerospace applications are often plagued with an overabundance of ambient vibrations, electromechanical transducers are often considered a viable choice for energy scavengers. In this study, two classes of transducer are considered: the piezoelectric polymer polyvinylidene fluoride and the ionically conductive ionic polymer transducer. Analytical models are formed for each material assuming axial loading and simulation results are compared with experimental results for each test. Each material is then compared to examine the effectiveness of their mechanoelectric conversion properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call