Abstract

A two-dimensional, electrically-multiplexed robotic tactile sensor was realized by coupling a piezoelectric polyvinylidene fluoride (PVDF) polymer film to a monolithic silicon integrated circuit (IC). The IC incorporates 64 sensor electrodes arranged in a symmetrical 8*8 matrix. Each electrode occupies a 400*400 mu m square area, and they are separated from each other by 300 mu m. A 40- mu m thick piezoelectric PVDF polymer film was attached to the electrode array with an electrically non-conductive urethane adhesive. The response of the tactile sensor is linear for loads spanning 0.8 to 135 grams of force (gmf). The response bandwidth is 25 Hz, the hysteresis level is tolerable, and, for operation in the sensor's linear range, taxel crosstalk is negligible. The historically persistent stability and response reproducibility limitation associated with piezoelectric-based tactile sensors has been solved by implementing a novel pre-charge voltage bias technique to initialize the pre- and post-load sensor responses. A rudimentary tactile object image measurement procedure for applied loads has been devised to recognize the silhouette of a sharp edge, square, trapezoid, isosceles triangle, circle, toroid, slotted screw, and cross-slotted screw. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.