Abstract

The design of a register file with large scalability, high bandwidth, and energy efficiency is the major issue in the execution of streaming Very Long Instruction Word (VLIW) processors on Field Programmable Gate Arrays (FPGA's). This problem arises due to the fact that accessing multi-ported register files that can use optimized on-chip memory resources as well as enabling the maximum sharing of register operands are difficult provided that FPGA's on-chip memory resources only support up to two ports. To handle this issue, an Inverted Distributed Register File (IDRF) architecture is proposed in this article. This new IDRF is compared with the existing Central Register File (CRF) and the Distributed Register File (DRF) architectures on parameters such as kernel performance, circuit area, access delay, dynamic power, and energy. Experimental results show that IDRF matches the kernel performance with the CRF architecture but 10.4% improvement in kernel performance as compared to DRF architecture. Similar experimental results related to the circuit area, dynamic power, and energy are discussed in this article.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call