Abstract
In healthcare (HC), Internet of Things (IoT) integrated cloud computing provides various features and real-time applications. However, owing to the nature of IoT architecture, their types, various modes of communication and the density of data transformed in the network, security is currently a critical issue in the IoT healthcare (IoT-HC) field. This paper proposes a deep learning (DL) model, namely Adaptive Swish-based Deep Multi-Layer Perceptron (ASDMLP) that identifies the intrusions or attacks in the IoT healthcare (IoT-HC) platform. The proposed model starts by clustering the patients’ sensor devices in the network using the Probability-based Fuzzy C-Means (PFCM) model. After clustering the devices, the cluster heads (CHs) among the cluster members are selected based on the energy, distance and degree of the sensor devices for aggregating the data sensed by the medical sensor devices. The base station (BS) sends the patient’s data collected by the CHs to the cloud server (CS). At the cloud end, the proposed model implements an IDS by applying training of the DL model in publicly available databases. The DL approach first performs preprocessing of the data and then selects optimal features from the dataset using the Opposition and Greedy Levy mutation-based Coyotes Optimization Algorithm (OGCOA). The ASDMLP trains these optimal features for the detection of HC data intrusions. The outcomes confirm that the proposed approach works well on real-time IoT datasets for intrusion detection (ID) without compromising the energy consumption (EC) and lifespan of the network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.