Abstract

A new method to solve the collision problems of slender bars with massive external surfaces is developed. The proposed solution accounts for the effect of impact induced vibrations and multiple collisions on the post-collision velocities of the impacting members. The approach is based on representing the vibrational energy of the bars during the collision process in terms of a nondimensional parameter, termed the elastic energy percentile. The elastic energy percentile is expressed as a simple scalar function of the drop angle and a nondimensional parameter, which encapsulates the bar geometry, material, and the stiffness of the contact surface. The elastic energy percentile is then used to develop a new momentum-based solution method. The method relies on a revised energetic coefficient of restitution that resolves the effect of impact induced vibrations on the post-collision velocities of the impacting bars. The assumptions used in the theoretical development and the outcomes predicted by the proposed method were verified by conducting a set of experiments using several bars with varying geometric and material properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.