Abstract
The coefficient of restitution (CoR) is an empirical parameter in dense gas-particles computational fluid dynamics (CFD) by means of kinetic theory of granular flow (KTGF). A great sensitivity of CoR on predictions was found because of the existence of multiple collisions of particles in fluidized beds. In present study, an empirical correlation of granular CoR is proposed using a coupled KTGF of Euler granular phase and the discrete element method (DEM) of Lagrange discrete particles. The CoR is calculated using statistical methodology according to relative velocity of two colliding discrete particles. The granular CoR is computed from granular volume fractions, indicating that the multiple collision effects on momentum conservation over collision at high granular volume fractions. The granular constitutive equations for the transport coefficients are solved according to granular CoR. The simulated bed expansions agreed with experimental measurements. The predicted granular pressure and viscosity are compared with measured data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.