Abstract

Recent studies show that systemic administration of a glucagon-like peptide-1 receptor (GLP-1R) agonist is sufficient to attenuate the reinstatement of cocaine-seeking behavior, an animal model of relapse. However, the neural mechanisms mediating these effects and the role of endogenous central GLP-1 signaling in cocaine seeking remain unknown. Here, we show that voluntary cocaine taking decreased plasma GLP-1 levels in rats and that chemogenetic activation of GLP-1-producing neurons in the nucleus tractus solitarius (NTS) that project to the ventral tegmental area (VTA) decreased cocaine reinstatement. Single nuclei transcriptomics and FISH studies revealed GLP-1Rs are expressed primarily on GABA neurons in the VTA. Using in vivo fiber photometry, we found that the efficacy of a systemic GLP-1R agonist to attenuate cocaine seeking was associated with increased activity of VTA GABA neurons and decreased activity of VTA dopamine neurons. Together, these findings suggest that targeting central GLP-1 circuits may be an effective strategy toward reducing cocaine relapse and highlight a novel functional role of GABAergic GLP-1R-expressing midbrain neurons in drug seeking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.