Abstract
This paper derives an empirical formula for predicting the collapse strength of composite cylindrical-shell structures under external hydrostatic pressure loads as a function of geometric dimensions and layered angles, where the effects of initial manufacturing imperfections are implicitly taken into account. A series of experiments are undertaken on [±θ/90]FW filament-wound-type composite cylindrical-shell models subjected to collapse pressure loads. A total of 20 composite cylindrical-shell models are tested to derive the empirical formula, which is validated by comparison with experimental data, existing design formulas of ASME 2007 and NASA SP-8700, and solutions of the nonlinear finite element method. It is concluded that the proposed formula accurately predicts the collapse pressure loads of filament-wound composite cylinders and will thus aid the safety design of composite cylindrical shell-structures under external pressure loads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.