Abstract

Over the past few decades, a great many data clustering algorithms have been developed, including K-Means, DBSCAN, Bi-Clustering and Spectral clustering, etc. In recent years, two new data clustering algorithms have been proposed, which are affinity propagation (AP, 2007) and density peak based clustering (DP, 2014). In this work, we empirically compare the performance of these two latest data clustering algorithms with state-of-the-art, using 6 external and 2 internal clustering validation metrics. Our experimental results on 16 public datasets show that, the two latest clustering algorithms, AP and DP, do not always outperform DBSCAN. Therefore, to find the best clustering algorithm for a specific dataset, all of AP, DP and DBSCAN should be considered. Moreover, we find that the comparison of different clustering algorithms is closely related to the clustering evaluation metrics adopted. For instance, when using the Silhouette clustering validation metric, the overall performance of K-Means is as good as AP and DP. This work has important reference values for researchers and engineers who need to select appropriate clustering algorithms for their specific applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.