Abstract

<span>Clustering is a significant approach in data mining, which seeks to find groups or clusters of data. Both numeric and categorical features are frequently used to define the data in real-world applications. Several different clustering algorithms are proposed for the numerical and categorical datasets. In clustering algorithms, the quality of clustering results is evaluated using cluster validation. This paper proposes an efficient clustering algorithm for mixed numerical and categorical data using re-clustering and cluster validation. Initially, the mixed dataset is clustered with four traditional clustering algorithms like expectation-maximization (EM), hierarchical cluster (HC), k-means (KM), and self-organizing map (SOM). These four algorithms are validated, and the best algorithm is selected for re-clustering. It is an iterative process for improving the quality of cluster results. The incorrectly clustered data is iteratively re-clustered and evaluated based on the cluster validation. The performance of the proposed clustering method is evaluated with a real-time dataset in terms of purity, normalized mutual information, rand index, precision, and recall. The experimental results have shown that the proposed reclust algorithm achieves better performance compared to other clustering algorithms.</span>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.