Abstract

Community detection emerges as an important task in the discovery of network mesoscopic structures. However, the concept of a “good” community is very context-dependent, and it is relatively complicated to deduce community characteristics using available community detection techniques. In reality, the existence of a gap between structural goodness quality metrics and expected topological patterns creates a confusion in evaluating community structures. We thus introduce an empirical multivariate analysis of different structural goodness properties in order to characterize several detectable community topologies. Specifically, we show that a combination of two representative structural dimensions including community transitivity and hub dominance allows to distinguish different topologies such as star-based, clique-based, string-based and grid-based structures. Additionally, these classes of topology disclose structural proximities with those of graphs created by Erdős–Renyi, Watts–Strogatz and Barabasi–Albert generative models. We illustrate popular community topologies identified by different detection methods on a large dataset composing many network categories and associate their structures with the most related graph generative model. Interestingly, this conjunctive representation sheds light on fundamental differences between mesoscopic structures in various network categories including communication, information, biological, technological, social, ecological, synthetic networks and more.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.