Abstract

With the advancement of Information Technology, web is growing rapidly and it has became necessary part of our daily lives. It is mandate to study the navigation behavior of the user to improve the quality of web site design for personalization and further recommendation. Analysis of web navigation behavior heavily relies on navigational models. This paper is an effort to give insights of current state-of-the-art techniques used for web navigation prediction. These navigation models are broadly classified into three categories: sequential mining, classification and clustering. Analytical analysis is performed on all the categories used in web navigation prediction. Further empirical analysis is performed on popular techniques of each category Markov Model (sequential mining), Support vector machine (classification) and K-means (clustering) on the common platform to measure the effectiveness of these techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.