Abstract
<p>Traditional machine learning models generally use weak supervision model, which is difficult to adapt to the scene of multi classification for emotional text. Therefore, a multi model ensemble learning algorithm for emotional text classification is proposed. The algorithm takes the labeled emotional text data as the training sample, uses the improved TF-IDF algorithm to train the word vector space model, selects three weakly supervised machine learning algorithms, linear SVC, xgboost and logistic regression, to construct the base classifier, and uses the random forest algorithm to construct the meta classifier. It realizes the function of dividing emotional text into three categories: positive, neutral and negative. From the simulation and test results, the AUC values of the multi model ensemble learning algorithm model for each category are 0.93, 0.94 and 1.00, and the AP values are 0.87, 0.86 and 1.00, and the indicators of accuracy and recall are better than the single machine learning model, which realizes the high performance and high accuracy for emotional text classification.</p> <p>&nbsp;</p>
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have