Abstract
The construction and performance of an electrospray-ionization mass spectrometer with new features are described. The mass spectrometer consists of a newly designed electrospray ion-source that is plugged directly into a modified commercial quadrupole mass spectrometer with the ions entering the mass analyzer through a long metal capillary tube and three stages of differential pumping. The present ion source differs from previous designs in the combination of techniques employed in the transportation and desolvation of solvated biomolecule ions, prior to mass analysis. Transport of ionized entities between atmospheric pressure and vacuum is carried out through a 203 mm long stainless steel capillary tube with a 0.5 mm bore. Desolvation is effected by the use of controlled heat transfer through the long capillary tube and collisional activation in a region of reduced pressure between the capillary tube exit and the skimmer. Desolvation with this system is convenient and effective and does not involve the strong countercurrent flows of gases that have been used by all previous workers. The effects on the spectra of peptides of capillary tube temperature and desolvation collision energy are investigated. Electrospray-ionization mass spectrometric results are described for thirteen proteins with molecular masses ranging from 5000 to 77,000 Da. The performance of the present instrument, with respect to mass accuracy and sensitivity, is comparable with previously reported systems. The effect of protein concentration in solution on the electrospray mass spectrometric response and charge-state distribution is discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.