Abstract

To achieve coordinated functions, fluidic soft robots typically rely on multiple input lines for the independent inflation and deflation of each actuator. Fluidic actuators are controlled by rigid electronic pneumatic valves, restricting the mobility and compliance of the soft robot. Recent developments in soft valve designs have shown the potential to achieve a more integrated robotic system, but are limited by high energy consumption and slow response time. In this work, we present an electropermanent magnet (EPM) valve for electronic control of pneumatic soft actuators that is activated through microsecond electronic pulses. The valve incorporates a thin channel made from thermoplastic films. The proposed valve (3 × 3 × 0.8 cm, 2.9 g) can block pressure up to 146 kPa and negative pressures up to -100 kPa with a response time of less than 1 s. Using the EPM valves, we demonstrate the ability to switch between multiple operation sequences in real time through the control of a six-DoF robot capable of grasping and hopping with a single pressure input. Our proposed onboard control strategy simplifies the operation of multi-pressure systems, enabling the development of dynamically programmable soft fluid-driven robots that are versatile in responding to different tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.