Abstract
Single crystal of gammairradiated 2,6-di-tert-butyl-4-methylphenol (BHT) was investigated using an electron paramagnetic resonance (EPR) technique at different orientations in the magnetic field at room temperatures. Taking into consideration the chemical structure and the experimental spectra of the irradiated single crystal of BHT, we assumed that one phenoxyltype paramagnetic species was produced having an unpaired electron localized at the methyl fragment side of the phenyl ring. Depending on this assumption, one possible radical was modeled using the B3LYP/6-311+G(d) level of density-functional theory. EPR parameters were calculated for these modeled radical using the B3LYP/TZVP and B3LYP/EPR-III level. The averaged value of isotropic hydrogen hyperfine coupling constants of rotating methyl functional group of phenoxyl radical is calculated for the first time. Theoretically calculated values of the modeled radical are in reasonably good agreement with the experimental data determined from the spectra (differences in averaged coupling constant values smaller than 5%, and differences in isotropic g values fall into 1 ppt).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.