Abstract
Linear plasma devices, such as the Prototype Material Plasma Exposure eXperiment (Proto-MPEX), are an economic method to study plasma-material interactions under high heat and particle fluxes. The Proto-MPEX device at Oak Ridge National Laboratory is a high-density helicon plasma generator with additional resonant electron heating to study plasma-material interactions in ITER-like conditions. Here, we present modeling results of an electron Bernstein wave (EBW) heating scheme for this device using a microwave-based system. A 28 GHz injection system is available to provide power levels up to 100 kW injected into low electron temperature and high electron density plasmas. A modified version of the GENRAY ray-tracing code, GENRAY-C, has been used to determine the EBW and electron cyclotron heating wave accessibility for these overdense plasmas. Modeling has shown that greater than 80% of mode conversion from the ordinary mode to the EBW is possible for 28 GHz injection in Proto-MPEX. Calculations show that by utilizing the effects of Doppler-shifted resonance absorption, power deposition near the core is possible. Significant collisional damping, leading to edge absorption, is expected to occur for neutral pressures >1.0 mTorr; however, experiments can be designed to minimize these effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.