Abstract

This study proposes the design of electromyography (EMG)-based force feedback controller which explicitly considers human-robot interaction for the exoskeletal assistive robot. Conventional approaches have been only consider one-directional mapping from EMG to control input for assistive robot control. However, EMG and force generated by the assistive robot interfere each other, e.g., amplitude of EMG decreases if limb movements are assisted by the robot. In our proposed method, we first derive the nonlinear mapping from EMG signal to muscle force for estimating human joint torque, and convert it to assistive force using human musculoskeletal model and robot kinematic model. Additionally the feedforward interaction torque is feedback into torque controller to acquire the necessity loads. To validate the feasibility of the proposed method, assistive One-DOF system was developed as the real equipment and the simulator. We compared the proposed method with conventional approaches using both the simulated and the real One-DOF systems. As the result, we found that the proposed model was able to estimate the necessary torque adequately to achieve stable human-robot interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call