Abstract
Abstract—The inductive effect of near-end crosstalk for a category five unshielded, twisted-pair cable has been verified using the electromagnetic topology simulation method. Crosstalk reduction and its dependency on such parameters as driving signals, circuit configuration and impedance, are studied. The simulation results are consistent with analytical analysis. Results show that the straightthrough, differential-generator, twisted-pair receptor model is the most effective configuration to control the near-end crosstalk level. This is due to the influences from both the neutralizing mutual inductance and the single current generator. The simulation results also show that electromagnetic topology-based predictions are valid only for cables that are electrically short. Simulations are carried out using a compaction scheme with a single equivalent circuit. As a result, the unshielded, twisted-pair cable portion of the circuit can be combined with a larger network for analyzing the overall response of the entire network system.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have