Abstract
Pyrite is one of the most abundant metal sulfide tailings and is susceptible to oxidation, yielding acidic mine drainage (AMD) that poses significant environmental risks. Consequently, the exploration of pyrite surface oxidation and the kinetic influencing factors remains a pivotal research area. Despite the oxidation of pyrite producing a significant amount of sulfate (SO42-), a comprehensive investigation into its influence on the oxidation process is lacking. Leveraging pyrite's semiconducting nature and the electrochemical intricacies of its surface oxidation, this study employs electrochemical techniques-cyclic voltammetry (CV), Tafel polarization, and electrochemical impedance spectroscopy (EIS)-to assess the effect of SO42⁻ on pyrite surface oxidation. The CV curve shows that SO42- does not change the fundamental surface oxidation mechanism of pyrite, but its redox peak current density decreases with the increase in SO42-, and the surface oxidation rate of pyrite decreases. The possible reason is attributed to SO42- adsorption onto pyrite surfaces, blocking active sites and impeding the oxidation process. Furthermore, Tafel polarization curves indicate an augmentation in polarization resistance with elevated SO42- concentrations, signifying heightened difficulty in pyrite surface reactions. EIS analysis underscores an increase in Weber diffusion resistance with increasing SO42⁻, indicating that the diffusion of Fe3+ to the pyrite surface and the diffusion of oxidized products to the solution becomes more difficult. These findings will improve our understanding of the influence of SO42- on pyrite oxidation and have important implications for deepening the understanding of surface oxidation of pyrite in the natural environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.