Abstract

Phenol, a known water pollutant, was electrochemically oxidized on a steel/IrO2–Sb2O3 novel anode. Since the oxidation mechanisms vary based on the anode material, a mechanisms study of electrooxidation of phenol on it was conducted. The phenol oxidation was carried out at 20 mA/cm2 constant current density with a pH 11.00 Na2SO4 medium at room temperature. During 6 h of electrolysis, samples were tested for chemical oxygen demand removal efficiency of the anode. The steel/IrO2–Sb2O3anode showed 76.3% chemical oxygen demand removal efficiency. Both 4-nitroso-N,N-dimethylaniline and the HCO3–/CO32– radical scavenger tests confirmed the formation and presence of the hydroxyl radicals in the system. Therefore, it was concluded that the hydroxyl radicals that are generated on the anode surface are the main cause for the oxidation mechanism. Moreover, ICE, HPLC, and UV-vis absorbance and cyclic voltammetry results confirmed the presence of catechol and benzoquinone as intermediates and the reaction mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call